3,745 research outputs found

    Detection of ocean color changes from high altitudes

    Get PDF
    The detection of ocean color changes, thought to be due to chlorophyll concentrations and gelbstoffe variations, is attempted from high altitude (11.3km) and low altitude (0.3km). The atmospheric back scattering is shown to reduce contrast, but not sufficiently to obscure color change detection at high altitudes

    On the Nature of X-ray Surface Brightness Fluctuations in M87

    Full text link
    X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features which reflect fluctuations in density and/or temperature of the intra-cluster medium. In this paper we study these fluctuations in M87/Virgo, to establish whether sound waves/shocks, bubbles or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7' to the east and south-west, and the adiabatic nature of the weak shocks at 40" and 3' from the center. For features of 5--10 kpc, we show that the central 4'x 4' region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30 percent of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14'x14' region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of about 30 percent) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with an AGN feedback model mediated by bubbles of relativistic plasma.Comment: 16 pages, submitted to Ap

    Kelvin-Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective ICM viscosity

    Full text link
    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intra-cluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and north-east of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities ≳\gtrsim 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e. in the presence or absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.Comment: Accepted for ApJ; 15 pages, 11 figures. A movie can be found here: http://www.hs.uni-hamburg.de/DE/Ins/Per/Roediger/research.html#Virgo-viscou

    Viscous Kelvin-Helmholtz instabilities in highly ionised plasmas

    Get PDF
    Transport coefficients in highly ionised plasmas like the intra-cluster medium (ICM) are still ill-constrained. They influence various processes, among them the mixing at shear flow interfaces due to the Kelvin-Helmholtz instability (KHI). The observed structure of potential mixing layers can be used to infer the transport coefficients, but the data interpretation requires a detailed knowledge of the long-term evolution of the KHI under different conditions. Here we present the first systematic numerical study of the effect of constant and temperature-dependent isotropic viscosity over the full range of possible values. We show that moderate viscosities slow down the growth of the KHI and reduce the height of the KHI rolls and their rolling-up. Viscosities above a critical value suppress the KHI. The effect can be quantified in terms of the Reynolds number Re = U{\lambda}/{\nu}, where U is the shear velocity, {\lambda} the perturbation length, and {\nu} the kinematic viscosity. We derive the critical Re for constant and temperature dependent, Spitzer-like viscosities, an empirical relation for the viscous KHI growth time as a function of Re and density contrast, and describe special behaviours for Spitzer-like viscosities and high density contrasts. Finally, we briefly discuss several astrophysical situations where the viscous KHI could play a role, i.e., sloshing cold fronts, gas stripping from galaxies, buoyant cavities, ICM turbulence, and high velocity clouds.Comment: Accepted by MNRAS. 22 pages, 21 figure

    The Disturbed 17 keV Cluster Associated with the Radio Galaxy 3C 438

    Full text link
    We present results from a {\em Chandra} observation of the cluster gas associated with the FR II radio galaxy 3C 438. This radio galaxy is embedded within a massive cluster with gas temperature ∼\sim17 keV and bolometric luminosity of 6×1045\times10^{45} ergs s−1^{-1}. It is unclear if this high temperature represents the gravitational mass of the cluster, or if this is an already high (∼\sim 11 keV) temperature cluster that has been heated transiently. We detect a surface brightness discontinuity in the gas that extends ∼\sim600 kpc through the cluster. The radio galaxy 3C 438 is too small (∼\sim110 kpc across) and too weak to have created this large disturbance in the gas. The discontinuity must be the result of either an extremely powerful nuclear outburst or the major merger of two massive clusters. If the observed features are the result of a nuclear outburst, it must be from an earlier epoch of unusually energetic nuclear activity. However, the energy required (∼1063\sim10^{63} ergs) to move the gas on the observed spatial scales strongly supports the merger hypothesis. In either scenario, this is one of the most extreme events in the local Universe.Comment: 13 pages, 4 figures, 1 table - accepted for publication in the Astrophysical Journal Letter

    A Multi-wavelength Study of the Host Environment of SMBHB 4C+37.11

    Get PDF
    4C+37.11, at z=0.055 shows two compact radio nuclei, imaged by VLBI at 7mas separation, making it the closest known resolved super-massive black hole binary (SMBHB). An important question is whether this unique object is young, caught on the way to a gravitational in-spiral and merger, or has `stalled' at 7pc. We describe new radio/optical/X-ray observations of the massive host and its surrounding X-ray halo. These data reveal X-ray/optical channels following the radio outflow and large scale edges in the X-ray halo. These structures are promising targets for further study which should elucidate their relationship to the unique SMBHB core.Comment: To appear in the Astrophysical Journa
    • …
    corecore